REACTION OF TETRACYANOETHYLATED KETONES WITH ALDEHYDES. SYNTHESIS OF 3-IMINO-2,6-DIOXABICYCLO[2.2.2]OCTANES

O. E. Nasakin, E. G. Nikolaev, P. B. Terent'ev, A. Kh. Bulai, B. A. Khaskin, and K. Dager UDC 547.239.2'284'281'571'81: 543.51

The products of the addition of tetracyanoethylene to ketones react smoothly with aliphatic, aromatic, and heterocyclic aldehydes to give 4,8,8-tricyano-3-imino-2,6-dioxabicyclo[2.2.2]octanes. The structures of the reaction products were confirmed by ¹³C, IR, and mass spectral data.

In [1] it was shown that the aliphatic and aliphatic-aromatic ketones upon reaction with tetracyanoethylene (TCE) in the presence of "molecular silver" form tetracyanoethylation products. According to the data in [2, 3], cyano-substituted pyridones can be obtained by the action of alcohols on the latter, whereas tetracyanourethanes can be obtained upon reaction with aryl isocyanates [2, 3].

We have recently established that the reaction of TCE with ketones can be realized in the presence of water and alcohols or under the influence of UV light [4]. Since we have recently shown [5-9] that cyano-substituted 2-amino-4,5-dihydrofurans are formed in the reaction of symmetrical tetracyanoethane with carbonyl compounds, it seemed of interest to study the pathway of the reaction of tetracyanoethylated ketones I-III with aldehydes. We found that freshly prepared ketones I-III in an alcoholic medium, even at room temperature, react smoothly with aliphatic, aromatic, and heterocyclic aldehydes to give, apparently, unstable carbinols IV, which undergo initial cyclization to cyano-substituted 2-hydroxypyrans V and then to 3-imino-2,6-dioxabicyclo[2.2.2]octanes VI-VIII.

In the IR spectra of VI-VIII (Table 2) one observes intense absorption bands at 3250-3320 cm⁻¹, which are characteristic for an amino group, as well as bands of stretching vibrations of a C=N group at 1710-1725 cm⁻¹ [10, 11].

I, VI $R^1 = CH_3$, $R^2 = H$; II, VII $R^1 = R^2 = CH_3$; III, VIII $R^1 + R^2 = (CH_2)_4$

Two signals are characteristic for the ¹³C NMR spectra of VI and VII (see Table 3): the signal of the carbon atom bonded to the imino group at 154-159 ppm and the signal of the carbon atom bonded to the two oxygen atoms at 94-107 ppm. The assignment was made by means of recording of the spectra under off-resonance conditions and by means of the spectra of the structural analog [12].

The presence of a low-intensity peak ($W_M = 0.1-1.5\%$, Tables 4 and 5) of the molecular (M⁺) or, more often, the protonated molecular ion (MH⁺) is characteristic for the mass spec-

I.N.Ul'yanov Chuvash State University, Cheboksary 428015. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1462-1466, November, 1984. Original article submitted February 6, 1984.

TABLE 1. Characteristics of Substituted 2,6-Dioxabicyclo-[2.2.2]octanes VIa, b, VIIa-h, and VIIIa-h

Com-			Reaction	Found. %			Empirical	Calc., %			1, %
pounds	R.	mp, C	time, n	с	н	N	loimura	с	н	N	Yield
VIa	н	108-113	0,5	55,5	3,8	25,8	C ₁₀ H ₈ N ₄ O ₂	55,5	3,7	25,9	84
VIb	C ₂ H ₅	(dec.) 112—114	1	59,2	4,9	23,1	C ₁₂ H ₁₂ N ₄ O ₂	59,0	4,9	22,9	89
VIIa	Н	151-153	0,6	57,5	4,5	24,3	$C_{11}H_{10}N_4O_2$	57,4	4.3	24.3	92
VIIb	CH ₃	128-130	0,4	59,2	5,1	22,7	$C_{12}H_{12}N_4O_2$	59,0	5,0	22,9	95
VIIc	C_2H_5	124 - 126	0,8	60,5	5.4	21,6	$C_{13}H_{14}N_4O_2$	60,5	5.4	21,7	95
VIId	C ₃ H ₇	148 - 150	0,6	61,8	5,6	20,7	$C_{14}H_{16}N_4O_2$	61.8	5.9	20,6	92
VIIe	i-C ₃ H ₇	105-106	,0,3	61,9	6,0	20,4	$C_{14}H_{16}N_4O_2$	61.8	5,9	20,6	91
VIIf	2-Furyl	154—155	1	60,9	4,2	19,0	$C_{15}H_{12}N_4O_2$	60,8	4.0	18,9	90
VIIg VIIh	C ₆ H ₅ 3-NO ₂ C ₆ H ₄	(dec.) 175—177 173—174	4 3	66,8 58,2	4,6 3.8	18,1 19,9	C ₁₇ H ₁₄ N ₄ O ₂ C ₁₇ H ₁₃ N ₅ O ₄	66,7 58,1	4,6 3,7	18,3 19,9	94 94
VIIIa	H	127—129	1,3	61,1	4.7	22.0	$C_{13}H_{12}N_4O_2$	60,9	4.7	21.9	91
VIIIb	CH3	151-152	0,4	62.3	5.1	20.7	C14H14N4O2	62.2	5.2	20.7	91
VIIIc	C_2H_5	170-172	1	63.5	5.6	19.8	C15H16N4O2	63.4	5.6	19.7	92
VIIIq	C_3H_7	134—136	0,8	64.5	5.8	18.8	C16H18N4O2	64.4	6.0	18.8	93
VIIIe	i-C ₃ H ₇	169-172	1.5	64.7	6.2	18.6	C16H18N4O2	64.4	6.0	18.8	90
VIIIf	2-Fury1	164-166	0.5	63.4	4.5	17.2	$C_{17}H_{14}N_4O_3$	63.3	4.3	17.4	86
VIIIa	C H	(dec.)	25	69 7		167		60 7	1.0	100	01
VIIIE	3-NO-C-H	166-167	3,0	60,7	4,9	10,1	$C_{19} = 1_{16} = 1_{4} = 0_{2}$	60.5	4,8	10,9	06

TABLE 2. IR and Mass Spectra of VIa, b, VIIa-h, and VIIIa-h

Com- pound	IR spectrum, cm ⁻¹	Mass spectra ^a (relative intensities, %)
VIa	3290, 2265, 1720	$217 (0,4)^{b}, 173 (8), 149 (16), 83 (29), 73 (40), 71 (30) 69 (52) 67 (26) 60 (37) 57 (100) 55 (96)$
VIЬ	3285, 2270, 1720	(35, 50) $(32, 50)$ $(25, 50)$ $(25, 50)$ $(37, 57)$ (100) , 35 $(30)245 (1)^{6}, 201 (11), 187 (4), 186 (8), 160 (4), 158 (4),96$ (14) , 50 (65) , 58 (40) (42) (100) (41) (12)
VIIa	3320, 2270, 1720	$245 (1)^{b}, 201 (11), 187 (4), 186 (8), 160 (4), 158 (4), 166 (4), 50 (4), 158 (4), 160 (4), 160 (4), 158 (4), 160 (4$
VIIb	3280, 2262, 1720	245 (1) ^b , 201 (8), 200 (16), 186 (10), 110 (43), 109 (33) (32 (25), 47 (15)) (47) (47) (47) (47) (47) (47) (47) (4
VIIc	3330, 3295, 2265, 1720	(35), 53, (25), 12, (11), 61, (25), 45, (25), 45, (100) (259, (2)b, 215, (7), 200, (4), 110, (100), 109, (37), 93 (76), 72, (20), 61, (42), 50, (70), 57, (12), 43, (20)
VIId	3300, 2268, 1720	(73), 72 , (25) , 61 , (42) , 55 , (75) , 57 , (13) , 43 , $(25)273$, $(2)b$, 229 , (12) , 200 , (13) , 110 , (100) , 109 , (25) , $93(32)$, 72 , (82) , 72 , (42) , 61 , (42) , (57) , 55 , (56) , 42 , (42) ,
VIIe	3300, 2270, 1720	(32), (42) , (42) , (42) , (51) , (27) , (55) , (52) , (43) , $(25)(273), (4)^{6}, (22), (78), (37), (27), (135), (20), (120), (27), (110)(100)$, (100) , (20) , (23) , (151) , (72) , (55) , (55) , (151) , (55) , (100) , (100) , (100) , (100) , (20) , (110) , (100) , (20) , (110) , (100) , (20) , (110) , (100) ,
VIII	3290, 3170, 3140, 2270,	(100), 105, (20), 93, (31), 12, (33), 61, (51), 56, (49) 296, (5), 253, (4), 200, (8), 182, (20), 144, (36), 98, (9), 97, (100), 96, (27), 95, (20), 79, (5), 44, (36), 98, (9),
VIIg	3282, 3273, 2270, 1719	$307 (0.8)^{b}, 127 (2), 108 (7), 107 (100), 106 (11), 105 (18), 77 (20), $
VIIh	3290, 2270, 1720	(10), 173 (10), 172 (10), 121 (32), 51 (51), 50 (13) 351 (1), 173 (10), 152 (41), 151 (68), 150 (65), 146 (22) 105 (33) 77 (18) 76 (29) 51 (90) (3) (19)
VIIIa	3300, 3270, 2270, 1712	(22), 105 (33) , 77 (13) , 76 (20) , 51 (20) , 43 $(100)257 (2)^{6}, 213 (69), 171 (42), 161 (17), 144 (36), 141(50)$, 145 (30) , 107 (160) , 106 (20) , 67 (30) , 55 (20)
VIIIb	3280, 2268, 1725	(30), (30) , (30) , (30) , (100) , (100) , (100) , (30) , $($
VIIIc	3290, 2265, 1715	(20), 130 (40), 133 (100), 107 (36), 98 (58), 55 (53) (285 (2)b, 255 (8), 241 (40), 226 (55), 183 (37), 136 (50), 135 (22), 107 (35), 08 (20), 55 (100), 11 (45), 125 (20),
VIIId	3250, 3195, 2265, 1720	(50), (51) , (52) , (52) , (51) , (52) , (52) , (52) , (53)
VIIIe	3280, 2265, 1739	(20), 135, (32), 107, (23), 98, (32), 59, (100), 41, (45), 299, (4)b, 255, (100), 226, (55), 200, (19), 183, (27), 163, (10), 125, (20), 125, (20), 125, (27), 163,
VIIIf	3290, 3170, 3140, 2270,	(19), 150 (60), 153 (20), 98 (62), 56 (67), 55 (47) (322 (6), 226 (16), 199 (19), 182 (17), 172 (16), 144 (21) (20), 27 (100), 26 (42) (21) (42) (42) (42) (42) (42) (42) (42) (42
VIIIg	3285, 2270, 1710	(21), 50 (20), 57 (100), 90 (43), 95 (43), 41 (32) 332 (10), 226 (24), 199 (17), 193 (11), 108 (38), 107 (40), 106 (51), 105 (100), 08 (54), 77 (51), 77 (51), 107
VIIIh	3296, 3290, 2270, 1720	(40), 100 (51), 103 (100), 96 (54), 79 (51), 77 (91) 377 (3), 226 (37), 198 (16), 161 (17), 152 (100), 151 (60), 150 (76), 105 (34), 77 (84), 51 (45)

^aThe peaks of the molecular (protonated molecular) ion and the 10 most intense peaks are presented. ^bProtonated molecular ion.

TABLE 3. ¹³C NMR Spectra of VIa, b and VIIIa-h

Com-	Chemical shift, ppm								
pound	С ₍₁₎	C ₍₃₎	C ₍₄₎ (C ₍₈₎)	С ₍₅₎	С ₍₇₎	C ₍₈₎ (C ₍₄₎)	С ₍₉₎	C _(10, 11)	
VIa VIb VIIa VIIb VIIc VIIc VIId VIIe VIIf	107,59 95,40, 94, 97,24 109,05 108,81 108,92 108,56 109,70	158,53 70ª, 159,73 155,82 155,71 155,60 155,55 155,71 154,91	48,98 52,47 ^a , 51,31 ^a 51,14 53,59 53,84 53,79 54,68 b	66,40 72,40 70,48 64,06 70,24 74,28 73,07 77,58 69,94	43,37 46,94, 44,75 46,15 45,83 45,88 45,88 45,86 45,75 45,91	39,54 36,82 ^a , 35,47 ^a 33,72 45,45 44,54 44,70 43,05 b	110,88 113,66, 113,58 109,89 110,16 110,24 110,26 (110,72 111,31	114,44; 113,06 115,06; 117,89, 118,62; 118,65 112,75; 109,21 112,83; 110,34 112,80; 110,43 112,85; 110,51 112,83; 110,56 111,21; 113,01	

^aSignals of the cis and trans isomers. ^bThe signals of the $C(_4)$ and $C(_8)$ atoms cannot be identified because of the low concentration of the solution of VIIf in d₆-DMSO.

TABLE 4. Intensities of the Peaks of the Principal Characteristic Ions in the Mass Spectra of V and VII $(\%\Sigma_{39})$

Com- pound	₩ _M *	F ₁	F ₃	F4	F5	F ₆	F7	F ₈	Fg
VIb VIJa VIIb VIIc VIId VIIe VIIf VIIh	0,37 0,68 0,39 (0,31 0,33 0,46 1,43 0,17	3,26 2,66 2,01 1,17 1,67 8,23 0,76 0,11	11,11 2,13 1,94 5,68 5,76 8,00 12,01	3,92 1,69 10,48 16,45 13,38 10,50	 13,69 8,15 6,06 3,34 2,05 -	1,89 9,37 6,21 12,55 4,35 5,35 —	18,30 6,21 12,99 11,04 2,26 21,33 7,14	2,35 0,75 1,47 2,28 1,77 1,60 —	28,10 29,56 24,45 4,54 3,34 1,64 19,42 17,53

 $\overline{a_{W_M}} = (\Sigma I_M / \Sigma_{39}) \cdot 100\%.$

TABLE 5. Intensities of the Peaks of the Principal Characteristic Ions in the Mass Spectra of VIII ($\[mathcar{S}_{23}\]$)

Com- pound	₩ _M a	F1	F2	F4	F ₆	F7	F8	F ₁₉	F11	F12
VIII a VIII b VIII c VIII c VIII e VIII f VIII g VIII h	0,14 0,16 0,22 0,26 0,32 1,25 1,47 0,41	6,66 5,85 4,08 2,67 7,55 0,30 0,10	0,90 3,38 3,31 3,34 4,72 	0,61 2,31 5,10 4,01 6,04 —	2,93 5,85 3,31 2,22 1,51 1,12b 8,40b	3,08 10,20 12,92 1,54 15,21 3,69 9,95	1,28 5,23 5,61 5,12 4,15 0,34 0,28	9,60 3,38 2,55 1,49 0,38 6,62c 4,70c 6,02 c	2,93 1,78 1,09 0,86 0,77 6,62 d 9,24 d 7,59 d	3,20 3,08 1,68 7,79 3,59 2,14 1,61 1,25
$\overline{tW_{M}} = (\Sigma I_{M} / \Sigma_{39}) \cdot 100\%$. $b[F_{7} = 2H - CO]^{+}$. $c[F_{7} - H]^{+}$. $d[F_{7} - 2H - CO]$										

tra of VI-VIII. The latter is evidently formed in the ionization chamber due to ion-molecular reactions. The elementary compositions of M^+ and MH^+ are confirmed by the results of the high-resolution mass spectra. In all likelihood, protonation is realized at the nitrogen atom of the imino group, since we have observed monotypic character of the subsequent fragmentation of the F¹ ion (Scheme 2), which is formed as a result of the elimination by the M^+ or MH^+ ions of the resulting HNCO or H₂NCO fragments, respectively. The most intense peaks in the mass spectra of VI and VII are the peaks of F₃, F₆, F₇, and F₉ ions, whereas the overall fraction of the F₁-F₉ ions in the total ion current constitutes 37-69%, which indicates high selectivity of the fragmentation.

The fragmentation of the molecular (protonated) ions of VIII proceeds via a similar scheme; however, in addition, one observes additional pathways of fragmentation of the F_3-F_5 ions associated with cleavage of the cyclohexane fragment and the formation of $CH_2C\equiv0^+$ (F_{12}), $[F_4-C_2H_5]^+$ (F_{10}), and $[F_5-C_2H_5]^+$ (F_{11}) ions. In the case of aryl- and hetaryl-substituted VIIIa-h, owing to the migration of the site of localization of the charge in M^+ on the aromatic substituent, the fraction of F_1-F_{12} ions in the total ion current decreases; however, the intensities of the peaks of the $[F_7-H]^+$, $[F_7-2H]^+$, and $[F_7-2H-CO]^+$ increases sharply. In the case of VIIhv the $[F_7-H]^+$ ion subsequently initially loses an NO₂ group (m/z 105, % Σ_{39} 3.40), and only then the CO molecule (m/z 77, % Σ_{39} 8.4).

Thus the reaction of tetracyanoethylated ketones with aldehydes may serve as a convenient preparative method for the synthesis of diverse derivatives of 3-imino-2,6-dioxabicylo[2.2.2]octane. Scheme 2

EXPERIMENTAL

Monitoring of the course of the reaction was realized by TLC on plates of the Silufol type (UV-254) in an ethyl acetate hexane system (3:1) with development by iodine vapors. The ¹³C NMR spectra were recorded with a Bruker WH-90 apparatus at an operating frequency of 22.63 MHz with hexamethyldisiloxane (HMDS) as the standard.

The high- and low-resolution mass spectra were obtained with a Varian MAT-212 spectrometer at an ionization energy of 70 eV.

Synthesis of VI-VIII. A 55-60-mmole sample of the aldehydes* in 10 ml of isopropyl alcohol was added in a single portion at room temperature with stirring in a nitrogen atmosphere to a suspension of 50 mmole of freshly prepared and dried tetracyano ketone I-III in 50 ml isopropyl alcohol; in the process we observed a small exothermic effect. A 150-200ml sample of water was added to the reaction mixture,† the product was separated, washed with water, dried, and recrystallized.

LITERATURE CITED

- 1. B. J. Middleton, R. E. Heckert, E. L. Little, and C. J. Krespan, J. Am. Chem. Soc., <u>80</u>, 2783 (1958).
- 2. C. L. Dickinson, J. Am. Chem. Soc., 82, 4367 (1960).
- 3. C. L. Dickinson, US Patent No. 2925422; Chem. Abstr., 54, 15406 (1960).
- O. E. Nasakin, V. A. Kukhtin, G. N. Petrov, E. G. Nikolaev, V. V. Alekseev, and S. Yu. Sil'vestrova, USSR Inventor's Certificate No. 759507; Byull. Izobret., No. 32, 100 (1980).
- 5. V. V. Alekseev, O. E. Nasakin, V. K. Promonenkov, A. Kh. Bulai, and S. Yu. Sil'vestrov, Khim. Geterotsikl. Soedin., No. 8, 1137 (1980).
- 6. V. V. Alekseev, O. E. Nasakin, V. K. Promonenkov, A. Kh. Bulai, and S. Yu. Sil'vestrova, Khim. Geterotsikl. Soedin., No. 11, 1565 (1980).
- 7. O. E. Nasakin, V. V. Alekseev, V. K. Promonenkov, A. Kh. Bulai, and S. Yu. Sil'vestrova, Khim. Geterotsikl. Soedin., No. 6, 744 (1981).
- 8. O. E. Nasakin, V. V. Alekseev, P. B. Terent'ev, A. Kh. Bulai, and V. A. Shmorgunov, Khim. Geterotsikl. Soedin., No. 12, 1605 (1982).
- 9. V. V. Alekseev, O. E. Nasakin., V. A. Kukhtin, G. N. Petrov, and S. I. Obtemperanskaya, USSR Inventor's Certificate No. 899557; Byull. Izobret., No. 3, 100 (1982).
- L. Bellamy, New Data on the IR Spectra of Complex Molecules [Russian translation], Mir, Moscow (1971).

^{*}Excess aldehyde does not interfere with the reaction; in the case of solid aldehydes the reagent ratio was 1:1.

[†]In most cases the product was isolated in the form of crystals prior to dilution with water.

11. V. G. Granik, Usp. Khim., No. 2, 207 (1982).

12. R. E. Johnson and W. C. Jankowski, Carbon-13 NMR Spectra, Wiley-Interscience (1972).

REACTION OF 2-AMINOBENZOXAZOLES WITH COMPOUNDS

WITH ACTIVATED MULTIPLE BONDS

V. B. Kalcheva, L. S. Peshakova, and D. A. Simov

The reaction of 2-aminobenzoxazoles with activated alkenes of the acrylic acid type and its derivatives and methyl vinyl ketone proceeds in the presence of basic catalysts to give products of mono- and diaddition at the exocyclic nitrogen atom. The reaction of 5(6)-substituted 2-aminobenzoxazoles with esters of propyl and acetylenedicarboxylic acids in the absence of catalysts leads to the production of condensed 2-oxopyrimidines. The effect of substituents and the reaction conditions on the course of the process was investigated.

UDC 547.787.3'391

A considerable number of reactions involving the addition of heterocyclic amines to compounds that contain multiple carbon-carbon bonds have been described in the literature. The possibility of the synthesis, on the basis of these reactions, of new condensed heterocyclic compounds with potential pharmacological activity have continued to be of interest to synthetic chemists.

Continuing our study of the reactions of condensed 2-aminooxazoles with compounds with activated multiple bonds [1, 2], we have studied the reaction of 2-aminobenzoxazoles (Ia) and its derivatives (Ib-g) with activated alkenes and alkynes: esters of acrylic acid (IIa, b), acrylonitrile (IIc), acrylamide (IId), acrylic acid (IIe), methyl vinyl ketone (IIf), dimethyl acetylenedicarboxylate (IXa), and ethyl propiolate (IXb).

I a X=H; b X=5-CH₃; c X=5-Cl; d X=5-NO₂; e X=6-Cl; f X=6-Br; g X=6-NO₂; II a Y=COOCH₃; b Y=COOC₂H₅; c Y=CN; d Y=CONH₂; e Y=COOH; f Y=COCH₃; IIIa, c, g, k X=H; b, i X=5-Cl; d X=6-Cl; e X=6-Br; f, j X=5-NO₂; h, l X=5-CH₃; a Y=COOC₂H₅; b Y=COOCH₃; c-f Y=CN; g-i Y=COCH₃; j-l Y=COOH; IVa, d, i X=H; b, e X=5-CH₃; c-f X=b-Cl; g, j X=6-Cl; h X=6-Br; a-c Y=COOCH₃; d-h Y=CN; i, j Y=COCH₃; V a X=H; b X=5-CH₃; c X=6-Cl; VI X=H; VIII a X=H; b X=5-Cl

We have found that 2-aminobenzoxazoles react with activated alkenes only upon heating in the presence of basic catalysts. The reaction proceeds with the formation of products of mono- (III) and diaddition (IV) at the exocyclic nitrogen atom. The yields of III and IV depend substantially on the structures of the reagents and the reaction conditions.

K. Okhridsky Sofia University, Sofia, Bulgaria 1126. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1467-1471, November, 1984. Original article submitted January 30, 1984.